Source code for rendering.renderer_old

"""
This module is excluded from the index.

.. :noindex:
"""

import matplotlib.pyplot as plt
import numpy as np
from env.config.env_config import env_params

[docs] class MatplotlibRenderer(): def __init__(self, Forecast_visualizer, render_mode, radius, coordinate_system = "geographic"): self.coordinate_system = coordinate_system self.Forecast_visualizer = Forecast_visualizer self.render_count = env_params['render_count'] self.render_skip = env_params['render_skip'] self.render_mode = render_mode self.render_timestamp = self.Forecast_visualizer.forecast_subset.start_time self.dt = env_params['dt'] self.episode_length = env_params['episode_length'] self.goal = {"x": 0, "y": 0} #relative self.radius = radius # m self.radius_inner = radius * .5 # m self.radius_outer = radius * 1.5 # m #try: if self.coordinate_system == "geographic": #Zone 12 for Albuquerque. Will need to change this for other areas #self.p = Proj(proj='utm', zone=12, ellps='WGS84', preserve_units=False) #Also Central Coord for now? #self.start_coord = config_earth.simulation['start_coord'] #x, y = self.p(longitude=self.start_coord["lon"], latitude=self.start_coord["lat"]) self.init_plot_geographic() if self.coordinate_system == "cartesian": self.init_plot() #except: #print(colored("Not a Valid Coordinate System. Can either be geographic or cartesian","red"))
[docs] def init_plot_geographic(self): self.fig = plt.figure(figsize=(18, 10)) self.gs = self.fig.add_gridspec(nrows=2, ncols=2, height_ratios=[1, 4]) self.ax3 = self.fig.add_subplot(self.gs[0, :]) self.ax = self.fig.add_subplot(self.gs[1, 0], projection='3d') self.ax2 = self.fig.add_subplot(self.gs[1, 1], projection='custom3dquiver') self.ax.set_xlabel('X_proj (m)') self.ax.set_ylabel('Y_proj (m)') self.ax.set_zlabel('Altitude (km)') self.ax.set_xlim(-env_params['rel_dist'], env_params['rel_dist']) self.ax.set_ylim(-env_params['rel_dist'], env_params['rel_dist']) self.ax.set_zlim(env_params['alt_min'], env_params['alt_max']) self.path_plot, = self.ax.plot([], [], [], color='black') self.scatter = self.ax.scatter([], [], [], color='black') self.ground_track, = self.ax.plot([], [], [], color='red') self.scatter_goal = self.ax.scatter([], [], [], color='green') self.canvas = self.fig.canvas self.Forecast_visualizer.visualize_3d_planar_flow(self.ax2, quiver_skip=self.render_skip) self.current_state_line, = self.ax.plot([], [], [], 'r--') self.plot_circle(self.ax, self.goal["x"], self.goal["y"], self.radius, color='g-') self.plot_circle(self.ax, self.goal["x"], self.goal["y"], self.radius_inner, color='g--') self.plot_circle(self.ax, self.goal["x"], self.goal["y"], self.radius_outer, color='g--') self.altitude_line, = self.ax3.plot([], [], 'b-') self.ax3.set_xlabel('Number of Steps (dt=' + str(self.dt) + ')') self.ax3.set_ylabel('Altitude (m)') self.ax3.set_xlim(0, self.episode_length) self.ax3.set_ylim(env_params['alt_min'],env_params['alt_max']+100)
[docs] def reset(self, goal, Balloon, SimulatorState): if hasattr(self, 'fig'): plt.close('all') delattr(self, 'fig') delattr(self, 'ax') delattr(self, 'ax2') delattr(self, 'ax3') delattr(self, 'goal') delattr(self, 'scatter') delattr(self, 'canvas') self.Balloon = Balloon self.SimulatorState = SimulatorState self.goal = goal self.render_step = 1 self.hour_count = 0 self.render_timestamp = self.Forecast_visualizer.forecast_subset.start_time
[docs] def plot_circle(self, ax, center_x,center_y, radius, plane='xy', color ='g--'): #UPDATE: This is a new function because the radius wasn't plotting properly for smaller radii # Create the angle array theta = np.linspace(0, 2 * np.pi, 100) # Generate the circle points in 2D circle_x = radius * np.cos(theta) circle_y = radius * np.sin(theta) if plane == 'xy': x = center_x + circle_x y = center_y + circle_y z = np.full_like(x, env_params['alt_min']) ax.plot(x, y, z, color)
[docs] def render(self, mode='human'): if not hasattr(self, 'fig'): if self.coordinate_system == "geographic": self.init_plot_geographic() if self.coordinate_system == "cartesian": self.init_plot() if self.render_step == self.render_count: path = np.array(self.SimulatorState.trajectory) self.path_plot.set_data(np.array(path)[:, :2].T) self.path_plot.set_3d_properties(np.array(path)[:, 2]) self.ground_track.set_data(np.array(path)[:, :2].T) self.ground_track.set_3d_properties(np.full(len(path), env_params['alt_min'])) self.scatter._offsets3d = ( np.array([self.Balloon.x]), np.array([self.Balloon.y]), np.array([self.Balloon.altitude])) self.scatter_goal._offsets3d = (np.array([self.goal["x"]]), np.array([self.goal["y"]]), np.array([env_params['alt_min']])) self.current_state_line.set_data([self.Balloon.x, self.Balloon.x], [self.Balloon.y, self.Balloon.y]) self.current_state_line.set_3d_properties([env_params['alt_min'], self.Balloon.altitude]) self.altitude_line.set_data(range(len(path)), path[:, 2]) self.canvas.draw() # self.canvas.flush_events() self.ax3.set_title("Timestamp: " + str(self.SimulatorState.timestamp) + "\nTime Elapsed: " + str((self.SimulatorState.timestamp - self.render_timestamp))) duration_in_s = (self.SimulatorState.timestamp - self.render_timestamp).total_seconds() self.hours = int(divmod(duration_in_s, 3600)[0]) if self.hours > self.hour_count: self.ax2.clear() self.ax2.remove() self.ax2 = self.fig.add_subplot(self.gs[1, 1], projection='custom3dquiver') self.Forecast_visualizer.generate_flow_array(timestamp=self.SimulatorState.timestamp) self.Forecast_visualizer.visualize_3d_planar_flow(self.ax2, quiver_skip=self.render_skip) self.hour_count += 1 if mode == 'human': plt.pause(0.001) self.render_step = 1 else: self.render_step += 1